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Abstract — Traditional nuclear fuel qualification is a lengthy process challenged by erratic or incomplete
irradiation experimental data, leading to many unqualified fuels. In response, this paper presents an accelerated
fuel qualification (AFQ) framework that integrates multiscale modeling, machine learning, and legacy data
assimilation to inform specific integral testing. The framework leverages atomistic simulations to elucidate
fundamental mechanisms, such as xenon diffusion and defect kinetics, which inform mechanistic models of fuel
behavior. These mechanistic models are then validated against legacy experimental data, while machine learning is
used to refine critical parameters, such as Xe diffusivity, and to further reduce computational uncertainties.

As a demonstration, the framework is applied to characterize uranium mononitride (UN) fuel, resulting in the
quantification of swelling, which is a dominant failure mechanism, uncertainty quantification of the swelling
process in UN, and the development of performance envelopes as a function of temperature, linear heat generation
rate, and burnup. The AFQ methodology outlined here offers a robust proof-of-concept template for qualifying
advanced nuclear fuels, supporting regulatory modernization efforts for next-generation reactor technologies.

Keywords — Accelerated fuel qualification, uranium nitride, fuel performance, BISON, mechanistic model.

I. INTRODUCTION

Many new reactor designs for both terrestrial and
space applications are targeting challenging operating
regimes, such as high temperature, long lifespan, and
high burnup. These designs also aim for compact size,
enhanced reactor safety, and sufficient safety margins
covering all operating conditions. As a result, there is
a need to use nuclear fuels that can support these ambi-
tious goals. Uranium mononitride (UN) has emerged as
a promising candidate, offering high thermal conductiv-
ity, a high melting point, chemical compatibility with
most cladding materials, and high fissile density [1].
UN is suitable for both fast and thermal spectrum reac-
tors, making it attractive for a wide range of designs.

CONTACT Zachary Miller € zacharymiller@lanl.gov

However, before any nuclear fuel can be used in
commercial or advanced applications, it must be qualified
and approved by the U.S. Nuclear Regulatory
Commission (NRC). Research and development on UN
began in the 1960s, primarily for space and generation-IV
(GEN-1V) reactor applications. Several programs suc-
cessfully characterized the properties of unirradiated UN
and conducted limited irradiation and post-irradiation
examinations. While these efforts generated valuable
data, the available information remains insufficient com-
pared to that of traditional fuels (i.e., UO,), and funding
for further experimental programs was discontinued
before the fuel qualification could be completed.

To support the qualification of advanced fuels and the
licensing of advanced reactor technologies, the NRC began
looking at the criteria and possible alternative frameworks.
The accelerated fuel qualification (AFQ) process, discussed
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by the NRC, is of particular interest to vendors aiming to
deploy advanced reactors by the end of this decade. The AFQ
process is designed to reduce the number of required integral
irradiation tests by supplementing existing experimental data
with advanced, physics-based modeling and simulation [2].
In this paper, we describe the development of an
AFQ approach that couples advanced modeling and simu-
lation methods, machine learning (ML), and legacy data
from the past experiments. The framework is demon-
strated on a proof-of-concept UN fuel characterization.

Il. PROPOSED AFQ FRAMEWORK

The proposed AFQ framework couples legacy experi-
mental data with advanced modeling and simulation, ML,
and a limited number of targeted experiments focused on
investigating areas of high uncertainty. A graphical outline of
the approach is shown in Fig. 1. This tightly coupled, multi-
scale methodology ensures that each component informs and
enhances the others.

Atomic-scale defects (e.g., such as vacancies, inter-
stitials) drive macroscopic fuel degradation mechan-
isms, such as volumetric swelling, fission gas release,
and creep [3]. Such degradation directly threatens key
reactor safety functions, including the confinement of
radioactive materials, control of reactivity, and effec-
tive core cooling.

To accurately predict these phenomena, the frame-
work integrates atomistic simulations, including density

functional theory (DFT) and ML interatomic potentials,
to compute defect diffusion rates and cluster growth
kinetics [3—7]. The results of the atomistic simulations,
e.g., the entropy and enthalpy of structural defects, are
scaled up to the mesoscopic regime via cluster dynamics
simulations to predict diffusion coefficients. ML models
trained on experimental data, cluster dynamics outputs,
and data-augmented experimental legacy data sets predict
material properties, such as diffusion coefficients, with-
out the need for computationally intensive molecular
simulations [3].

ML also refines interatomic potentials, such as those
for uranium, derived from atomic-scale calculations,
thereby improving the fidelity of the simulations that
investigate radiation, chemical, and manufacturing
effects. These enhanced potentials are subsequently used
to parameterize mechanistic fuel performance models,
closing the multiscale loop and significantly reducing
the experimental burden required for fuel qualification.

Uncertainty quantification (UQ) is critical for ensur-
ing model validity and acceptability. Unlike empirical
models with a limited domain of applicability, our
mechanistic approach uses first-principles parameters,
such as grain size, defect density, and porosity, for exam-
ple [3,8,9]. Mechanistic fuel performance models
describe the interactions of these microstructure state
variables as a function of reactor operational conditions
and irradiation time, predicting consequent changes in the
fuel, and therefore the surrounding materials, such as
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Fig. 1. Proposed AFQ approach.
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However, the accuracy of these predictions depends
on rigorous UQ. We employ advanced statistical methods
and ML—driven sensitivity analysis to identify and reduce
the impact of key uncertainties on swelling and other fuel
performance predictions. This process enhances the valid-
ity and robustness of the models, especially when extra-
polating beyond existing experimental data.

A proof-of-concept demonstration of the proposed
AFQ framework was developed by applying it to UN
fuel, with the goal of reducing uncertainties related to
the modeling and simulation of the physical phenom-
ena that are the major contributors to safety limits and
margins for nuclear fuels, and defining a preliminary
fuel performance envelope. Fuel swelling is identified
as the governing life-limiting [10,11] mechanism for
UN fuel, and the initial fuel performance envelope is
defined based on fuel swelling as a function of fuel
temperature, linear heat generation rate, and burnup
(neutron fluence). The envelope maps the parameter
space where mechanistic fuel performance code predic-
tions align with experimental data, and it serves as the
starting point for reactor design and future qualification
experiments.

Vendors can expand this envelope using phenomena
identification and ranking table (PIRT) analysis and tar-
geted experiments, leveraging the AFQ framework to
prioritize high-impact tests and refine safety margins for
specific reactor designs. Moreover, the workflow pre-
sented here is not specific to swelling in UN fuel and
can be transferred to various other physical behaviors and
to other fuels.

With the AFQ framework and its application to UN
fuel established, the next section presents the combined
development and validation of the mechanistic models
and ML approaches. Here, ML-driven refinement of key
parameters, such as diffusivity coefficients, directly feeds
into mechanistic fuel performance simulations (e.g., in
BISON [12]), supporting UQ and enabling more reliable
predictions of swelling and related phenomena. This inte-
gration ensures that the mechanistic models are both
physically grounded and statistically credible, providing
a solid foundation for defining the initial fuel perfor-
mance envelope and supporting future experimental
campaigns.

Finally, legacy data and these validated models will
define the performance envelope, specifying operational
limits for temperature, linear heat generation rate, and
burnup, where mechanistic predictions align with experi-
mental data. This envelope serves as the foundation for
reactor designers to expand via targeted PIRT-guided
experiments.

NUCLEAR SCIENCE AND ENGINEERING 3

I1l. ML-ENHANCED MECHANISTIC MODELING FOR
URANIUM NITRIDE SWELLING PREDICTION AND
UNCERTAINTY REDUCTION

As mentioned, our AFQ methodology is focused on
reducing uncertainties in advanced fuel performance
modeling. Our recommended approach is shown in
Fig. 2. The process begins with an assessment of initial
uncertainties, informed by legacy experimental data and
current UN empirical models. These models employ
swelling correlations developed by Ross et al. [13] for
space nuclear applications, based largely on the SNAP-50
experimental campaign. However, these correlations have
a limited domain of applicability (fuel temperature: 1200
to 1600 K and burnup: 0.05 to 4.58 at. %) and exhibit
projected uncertainties of +25% at burnups above 1.12%
fissions per initial metal atom (FIMA) and greater than
60% at lower burnups [13].

Next, the AFQ process leverages legacy data and
new mechanistic BISON models, initially informed by
atomistic simulations, to describe the interactions of all
microstructure state variables as a function of reactor
operational conditions and irradiation time. It is the goal
of this step to begin model verification against the empiri-
cal model and experimental data.

Several UN fuel testing campaigns were conducted
over the past 40 years, resulting in a limited number of
experimental data sets reflecting UN fuel swelling as
a function of fuel temperature, power density and
burnup [14-37]. These campaigns, including SNAP-50
CANEL, SNAP-50 ORNL, BR-10, NASA and Battelle,
primarily targeted high-temperature irradiation regimes,
with most tests limited to burnups up to 5% FIMA. Only
the BR-10 series extended this range to 5% to 8%
FIMA, reflecting GEN-IV SMR designs. Fig. 3 illus-
trates the available UN volumetric fuel swelling experi-
mental data as a function of burnup, power density and
temperature.

When comparing new fuel performance data with
legacy data sets, it is essential to select data that are
both reliable and well suited for accurate modeling.
Consequently, the SNAP-50 test series was chosen as
the ideal benchmark for this initial comparison. Fig. 4
and Table 1 provide a detailed comparison of the legacy
empirical model, the new mechanistic model, and the
experimental data from the SNAP-50 series, enabling
a clear evaluation of model performance against estab-
lished experimental results.

Despite the utility of these data, substantial uncer-
tainties (4% to 67%) persist due to the limited number of
tests and gaps that remain in the test documentation. The
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Volumetric UN Swelling Prediction [%] as a function of T{°C),
linear heat generation rate (kW/m), and FIMA burnup (at%).

Legacy Data from Past Experiments

Current Bison Fuel Performance Models + Legacy Data from Past Experiments

New Bison Fuel Performance Models + Legacy Data from Past Experiments

New Bison Fuel Performance Models + Legacy Data from Past Experiments +
Monte Carlo Parameter Variation

New Bison Fuel Performance Models + Legacy Data from Past Experiments +
Monte Carlo Parameter Variation + Calibration

New Bison Fuel Performance Models + Legacy Data from Past Experiments +
Monte Carlo Parameter Variation + Calibration + New lon Irradiation Data

Fig. 2. Methodology of uncertainty reduction for UN swelling prediction. The width of the horizonal arrows represents the

qualitative amount of uncertainty for each level.
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Fig. 3. UN fuel swelling as a function of burnup [14-37].

NRC has emphasized that legacy data used for fuel qua-
lification must meet high quality assurance standards,
necessitating their use alongside high-fidelity modeling
and additional targeted experiments to support robust UN
fuel qualification [2]. For this reason, careful considera-
tion must be taken to select the appropriate legacy experi-
mental data that will be used to compare our mechanistic
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model against. For example, the top pin of test series 667
operated at a lower temperature compared to the middle
and bottom pins, however, it shows that the swelling was
nearly twice that of the middle and bottom pins.
Generally, it is expected that lower temperatures cause
less expansion within the fuel, leading to lower volu-
metric swelling.
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Fig. 4. Volumetric swelling versus burnup for various SNAP-50 test series. Error bars indicating £20% are included on all

experimental data points [18,19].

As shown in Table 1, the mechanistic model demon-
strated a clear performance advantage over the empirical
correlation—based approach, reducing swelling prediction
errors by 31% on average compared to the empirical
correlations. It outperformed the empirical model in
45% of the test cases, with standout accuracy at low
burnups (<1.1% FIMA), exemplified by CANEL 613-B
(4% error) and CANEL 603-B (6% error). However, high
burnup and extreme temperatures introduced greater
uncertainty, as fission gas migration amplified errors
(e.g., 220-B: 110% error). While the model maintained
superior performance in select high-burnup scenarios,
increasing fission gas migration and swelling at elevated
burnups generally introduced greater uncertainty, under-
scoring the importance of the refinement of the gas dif-
fusivity parameters in high-burnup and high-temperature
regimes.

IV. MULTISCALE UQ OF URANIUM NITRIDE

At the next stage, further uncertainty reduction was
achieved by applying Monte Carlo sampling to the key
physical parameters (e.g., diffusion coefficients) that
influence fuel swelling. In this work, the sampling dis-
tributions were either uniform or log-uniform depending
on how many orders of magnitude the parameter space
covered. This sampling was performed in a multiscale
framework by coupling atomistic simulations using

calculations performed using ML interatomic potentials
and DFT to the cluster dynamics code CENTIPEDE [36].

CENTIPEDE can be used to calculate the diffusiv-
ities of various chemical species and defects in the fuel
lattice. The resulting data sets generated by CENTIPEDE
serve as inputs to the updated mechanistic BISON mod-
els. Next, a calibration process was applied to the diffu-
sion coefficient predictions. Baseline parameters in the
cluster dynamics model, initially derived from DFT-
derived and empirical potentials, can be calibrated self-
consistently via a feedback loop integrating the data-
driven methods (such as genetic algorithms), data aug-
mentation techniques, molecular simulations, and experi-
mental legacy data used for ML training [3]. The
resulting data sets generated by CENTIPEDE serve as
inputs to the mechanistic BISON models.

A principal step in the multiscale UQ process is to
connect the atomistic-level calculations and simulations
to the mesoscale diffusivity calculations by varying the
parameters in the CENTIPEDE code, where each para-
meter represents a specific energetic or kinetic property
in the fuel lattice. When performing CENTIPEDE cal-
culations, the uncertainty in the atomistic parameters are
explored by randomly sampling the values for each
parameter within defined error bounds [38]. This sam-
pling is done 5000 times, and a CENTIPEDE calcula-
tion is performed across multiple temperatures for each
set of sampled parameters. The resulting temperature-
dependent xenon and vacancy diffusivities are then fed

@ANS
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TABLE 1

SNAP-50 Test Series Operational Conditions and Model Uncertainty® [13,18,19]

Volumetric Error
Capsule Swelling (vol %) Differential (%)
Maximum Fuel
Test Temperature Burnup Experi
Series Location® (K) (% FIMA) mental Empirical BISON Empirical BISON
CANEL

600 T 1424 0.19 3 0.81 0.69 -73% —17%
M 1551 0.18 1.8 0.94 0.80 —48% —56%

B 1574 0.18 1.8 0.97 0.84 —46% —53%

602 T 1272 0.97 3 2.34 2.09 —22% -30%
M 1432 0.91 3.5 2.95 2.34 -16% -33%

B 1399 0.86 2.4 2.65 2.18 10% —9%

603 T 1300 0.74 2.9 1.98 1.80 -32% —38%
M 1460 0.73 2.7 2.58 2.08 —5% -23%

B 1429 0.71 2.1 2.39 1.97 14% —6%

613 T 1388 0.54 1 1.79 1.53 79% 53%
M 1503 0.53 1.4 2.12 1.76 52% 26%

B 1413 0.58 1.7 1.98 1.63 16% —4%

220 T 1600 0.95 5 3.93 2.42 —21% —52%
M 1800 0.95 6 52 5.01 -13% -17%

B 1603 0.96 1.9 3.98 243 110% 28%

231 T 1741 1.95 8.9 8.74 5.02 —2% —44%
M 1950 1.92 10 11.29 12.75 13% 28%

B 1810 2.03 8.4 9.92 6.57 18% —22%

240 T 1696 1.51 5.8 6.63 4.39 14% —24%
M 1800 1.61 8 8.04 7.76 0% -3%

B 1743 1.58 7.8 7.32 5.34 —6% —32%

ORNL

658 T 1428 1.08 3.7 3.36 2.64 -9% -29%
M 1502 1.08 3.8 3.78 3.22 0% -15%

B 1485 1.08 3.5 3.68 3.01 5% —14%

662 T 1383 1.16 4.1 33 2.60 —20% —37%
M 1519 1.16 43 4.12 3.57 —4% -17%

B 1514 1.16 4.5 4.09 3.48 —9% -23%

664 T 1418 0.58 1.8 1.98 1.81 10% 1%
M 1457 0.58 1.4 2.11 1.98 51% 41%

B 1480 0.58 1.2 2.19 2.12 83% 77%

665 T 1327 4.58 7.1 9.23 5.28 30% —26%
M 1432 4.58 7.9 11.05 5.74 40% —27%

B 1377 4.58 7.7 10.07 5.50 31% —29%

667 T 1434 0.78 3 2.6 2.16 -13% —28%
M 1489 0.78 1.7 2.84 2.46 67% 45%

B 1505 0.78 1.8 291 2.57 62% 43%

669 T 1213 2.72 6.1 4.87 3.56 —20% —42%
M 1354 2.72 6.9 6.31 4.04 —8% —41%

B 1314 2.72 5.6 5.88 391 5% -30%

(+) uncertainty values indicate swelling values are greater than experimental

(—) uncertainty values indicate model values are less than experimental.

°T (top capsule), M (middle capsule), and B (bottom capsule).
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into BISON, where fuel behavior is simulated for each
of the 5000 sets of sampled atomic-scale parameters.

Shown in Fig. 5 are the diffusivity distributions
for xenon-based defects and vacancy-based defects at
1000 K and 1800 K, respectively, calculated using the
baseline atomistic parameters calculated using DFT
and empirical methods [38]. The orange curve in
each plot is a fit of the data to a skew-normal dis-
tribution. The temperature-dependent diffusivity
curves used in BISON are shown in Fig. 6.

Compare the distributions in Fig. 5 to those shown
in Fig. 7, which include the information from ML
interatomic potentials for UN developed by us, which
to our knowledge, are the first ML-based potentials for
UN [6]. The ML potentials reduce the variance in the
distributions compared to the baseline parameter set.
This can be seen by comparing the variance for each
distribution in each of the two figures. In each plot, the
skew-normal fitting usually fits the data well, but for
the more sharply peaked symmetric distributions (Xe at
1000 K) and highly asymmetric distributions (vacan-
cies at 1000 K), the fit does not quantitatively capture
the distribution behavior, though they are qualitatively
reasonable.

A log-normal fitting was also attempted, and its
performance was significantly worse than skew normal.

NUCLEAR SCIENCE AND ENGINEERING 7

The effect the ML method had on the variance and skew
of these fits compared to the DFT data is shown by
comparing Figs. 5 and 7.

Fig. 8 shows how the impact of reducing atomistic
uncertainties can affect uncertainties in the diffusivity cal-
culations in a hypothetical situation where the error bounds
on the atomistic parameters have been reduced by a factor of
10. The baseline distributions are shown in purple, and the
new distributions after uncertainty reduction are shown in
red. Notice that reducing the atomistic uncertainties by an
order of magnitude results in several orders of magnitude
reduction in the variance of the diffusivity distributions.
This nonlinear relation between uncertainty input and
uncertainty output could be an important observation affect-
ing multiscale AFQ processes.

At the reactor scale, BISON predicts behaviors like
fuel swelling. To do this, some of the mesoscale para-
meters it requires are the diffusivities of xenon defects
and vacancies. Here, these diffusivities and other mesos-
cale properties were obtained via CENTIPEDE; but
CENTIPEDE requires atomic-scale parameters for each
chemical species present as inputs.

By integrating diffusivity uncertainties, developed
through the methodologies previously described, with
burnup variations, we further identified and refined key
uncertainties affecting UN fuel swelling, as illustrated in
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Fig. 5. Diffusivity distributions of (left) xenon-based defects and (right) vacancy-based defects in UN calculated using
CENTIPEDE with input data from DFT calculations and empirical methods [38]. The top row is for 1000 K and the bottom
row is for 1800 K. The orange curve in each plot is a fit to a skew-normal distribution with the respective distribution parameters

shown in each legend.
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Fig. 9. The diffusion rates of the defects, including xenon,
uranium, and nitrogen, play a critical role in swelling beha-
vior [3]. This was demonstrated by generating a series of
temperature-dependent diffusivity curves derived from ran-
dom sampling within known uncertainty bounds for various
input parameters within the DFT simulations [3].

From these random distributions of Xe and
U diffusivity, we generated corresponding distributions
of fuel pin diameter changes, exemplifying the impact of
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diffusivity variability. The left panel of Fig. 9 presents
fuel pin diameter predictions as a function of burnup,
showing distributions of predicted values at each burnup
step due to the random diffusivity distributions.

The width of the distributions increases with burnup
because the contribution from gaseous products increases,
and as a result, impact on the fuel pin diameter from the
diffusion rates becomes more significant. For low burnup, the
impact is low and the distribution is narrow and peaked. The
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Fig. 7. Diffusivity distributions of (left) xenon-based defects and (right) vacancy-based defects in UN calculated using CENTIPEDE
with input parameters generated from a ML interatomic potential [6]. The top row is for 1000 K and the bottom row is for 1800 K. The
orange curve in each plot is a fit to a skew-normal distribution with the respective distribution parameters shown in each legend.

@ANS



Xenon

NUCLEAR SCIENCE AND ENGINEERING 9

Vacancy

N
w
L

g
)
T

Density of Distribution
e 9

e
n

L —

o
)

| mmm Baseline |
Atomistic uncertainty reduced by a factor 10

0 : . ; — - |

-26 —24 -22 -20 -18 -16

log1o(Diffusivity) (m?/s)

-32 -30 -28 -26 -24
logso(Diffusivity) (m?/s)

Fig. 8. Idealized case showing the diffusivity distributions using the baseline error bounds on the atomistic parameters (blue)
compared to the case when those bounds are reduced by a factor of 10. All CENTIPEDE simulations used to generate these
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impact from gaseous products below 0.8% FIMA is negligi-
ble, as expected, based on past experiments and theory.
Additionally, the fuel pin diameter grows with
increases in burnup and with increases in temperature
(not shown on the graph). The table on the right side of
Fig. 9 shows a comparison between the empirical and
mechanistic BISON model predictions of the fuel pin
diameters and corresponding uncertainties. The fuel pin
diameters resulting from the correlation-based empirical
model were smaller than the diameters calculated using
the mechanistic model. The difference between the two
methods increased with burnup, with the contribution of
gaseous swelling to the diameter increasing. This indi-
cated that the correlation-based model did not capture the
physics and underestimated the fuel pin diameter.
Consequently, its use requires the utilization of
higher safety margins with the corresponding additional
constraints on the power plant. Also, the uncertainties
associated with the empirical model were larger (25% to
60%) due to the uncertainties in the corresponding
experimental data. At the next step, it is planned to
model the burnup in the range of 3% to 8% FIMA

Average Fuel Temperature is ~1250-1400 K

using better statistics and to compare to the experimental
series BR-10 that was not used in the development of the
BISON mechanistic model.

Also, although not performed in this work, the final
uncertainty reduction in the performance envelope of the
nuclear fuel, in this case UN, can result from the genera-
tion of new experimental ion irradiation data. This new
data will be used to validate predictions of dislocation
and fission gas behavior as functions of temperature and
fluence generated by the mechanistic swelling models.
These experiments will target physical regimes with the
highest uncertainty as calculated using the multiscale
framework presented in this work.

V. UN FUEL PERFOMANCE ENVELOPE

The fuel performance envelope defines the environ-
mental conditions and radiation exposure under which
nuclear fuel must reliably perform [2]. It supports safety
analysis and informs the design of the reactor core, fuel
assemblies, and operating limits. The fuel performance

BU [% FIMA]/ Correlation- Mechanistic Dpmech — D,
+| corr
A-S80.001 ol Fuel Pin Based Model Model [mm]
500 1.3 %FIMA D[mm]
1.8 %FIMA
5.030+0.016 52 :’/":m The initial fuel pin diameter at the room temperature with the
200 / = measurement error: 4. 780+0.005 mm
0.6 4.870+0.054 4.984+0.011 0.114
§‘300 5.112+0.026
[
g 5.161+0.031 0.8 4.88110.061 5.03010.016 0.149
/ 5.208+0.026 1.2 4.908+0.032 5.1120.026 0.204
200 <
5.233+0.026 1.8 4.93210.038 5.16110.031 0.229
100 ] A/ 23 4.95510.044 5.20810.026 0.253
I i 2.8 4.97610.049 5.233:0.026 0.259
B__saal

04.9 50 51 52 53 54 55 56 57
Fuel Pin Diameter [mm]

Fig. 9.

Average Fuel Temp 1250-1400 K

Fuel pin diameter prediction using the (left) new mechanistic model and (right) a comparison to the old empirical model.
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Volumetric

Swelling [%] >

2300

2.5

Power
Density [kW/cc]

—— Max Envelope
26 (95%)
1o (68%)

Fuel Temperature [K]

Fig. 10. Initial UN fuel performance envelope based only on past experimental data [14-37]. The gray outline corresponds to all
available data, orange is the 95th percentile, and blue is the 68th percentile.

envelope significantly influences the broader nuclear
power plant operating envelope, including key parameters
such as fuel temperature, power peaking, and coolant
temperature. It also affects technical factors like cycle
length, target burnup, and refueling strategy.

To construct an initial performance envelope for UN
fuel, all available legacy volumetric swelling data were
plotted as a function of maximum fuel temperature,
power density, and burnup. This envelope defines the
parameter space where experimental data currently
exist, providing a reference for comparison with other
data, such as the mechanistic fuel performance model
predictions.

Within this envelope, three boundaries are high-
lighted in Fig. 10. The gray region encompasses the full
range of raw data. The orange outline indicates the upper
bound of the 26 (95%) envelope, and the blue outline
shows the 1o (68%) envelope. Together, these define the
space where the available data, and thus confidence in
UN fuel performance predictions, is highest.

BISON was employed to evaluate UN fuel per-
formance, incorporating advanced mechanistic
approaches. Past experimental data were statistically

@ANS

analyzed and compared to the simulation results from
BISON to validate the model predictions. Fig. 11
shows a side-by-side comparison of the performance
envelope of the SNAP-50 irradiation data compared
to the same test pins analyzed through the BISON
mechanistic fuel performance code. The maximum
envelope maintains an approximate shape; however,
the 1 and 2 sigma volumetric swelling reduce in size
when using the BISON fuel performance model. This
indicated that the model tended to underpredict the
upper percentile values (lo and 2c), resulting in
a narrower predicted performance envelope compared
to experimental observations. Further validation
against a broader set of experimental data is recom-
mended to ensure the model accurately captures the
full range of fuel performance.

To continue revising the fuel performance envelope
shown in Fig. 11, the full uncertainty reduction metho-
dology outlined in Fig. 2, along with analysis of operat-
ing transients in a generic microreactor, are required.
Additionally, it is anticipated that this envelope will be
expanded through new experiments guided by PIRT ana-
lyses specific to unique reactor designs.



Power
Density [kW/cc]
2.5

Max Envelope
26 (95%)
— 16 (68%)

Volumetric
Swelling [%]

Burnup
[%FIMA]

>

2000
Fuel Temperature [K]
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Power
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25 20 (95%)

—— 10 (68%)

Volumetric15 1

5 Burnup
Swelling [%]

[%FIMA]

2000
Fuel Temperature [K]

Fig. 11. Initial UN fuel performance envelope based only on SNAP-50 experimental data [18,19]: (left) SNAP-50 irradiation data
and (right) BISON fuel performance results. The gray outline corresponds to all available data, orange is the 95th percentile, and

blue is the 68th percentile.

These experiments will be informed by the com-
pleted AFQ work, which identified the dominant phe-
nomena influencing UN fuel behavior. Each reactor
vendor is expected to tailor and extend the fuel perfor-
mance envelope based on PIRT analyses relevant to their
design and by leveraging the AFQ methodology. This
will ensure that performance predictions are reliable
across a broader range of conditions.

VI. CONCLUSIONS

Advanced fuels are supported by a limited set of
experimental data, which falls short of meeting the
requirements for traditional fuel qualification processes.
Recognizing this gap, there is growing interest in devel-
oping AFQ methodologies. In this work, we presented
the development of a prototype AFQ framework
designed to address these challenges. This framework
integrates advanced modeling, ML techniques, legacy
experimental data, and a select set of new experiments
to systematically investigate potential failure mechan-
isms in UN fuel.

We detailed the structure of the proposed framework
and its application to UN fuel characterization. Notably,
we reported initial predictions of UN swelling, a key life-
limiting failure mode for uranium nitride fuel, along with
the associated computational uncertainties. The AFQ
approach demonstrated improved accuracy in predicting
fuel pin diameter changes and achieved a reduction in
uncertainty compared to previous methods.

The preliminary fuel performance envelope, based
on swelling as a function of fuel temperature, power
density, and burnup, was first established using histor-
ical experimental data. This envelope, refined with new
multiphysics modeling, will be updated again with UQ
derived from the developed multiscale AFQ framework
in the future. Overall, our findings provided evidence
that multiscale UQ, facilitated by ML, can effectively
narrow the safe performance envelope for UN fuel,
offering a robust and data-driven pathway for advanced
fuel qualification.
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