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Abstract — Traditional nuclear fuel qualification is a lengthy process challenged by erratic or incomplete 
irradiation experimental data, leading to many unqualified fuels. In response, this paper presents an accelerated 
fuel qualification (AFQ) framework that integrates multiscale modeling, machine learning, and legacy data 
assimilation to inform specific integral testing. The framework leverages atomistic simulations to elucidate 
fundamental mechanisms, such as xenon diffusion and defect kinetics, which inform mechanistic models of fuel 
behavior. These mechanistic models are then validated against legacy experimental data, while machine learning is 
used to refine critical parameters, such as Xe diffusivity, and to further reduce computational uncertainties.
As a demonstration, the framework is applied to characterize uranium mononitride (UN) fuel, resulting in the 
quantification of swelling, which is a dominant failure mechanism, uncertainty quantification of the swelling 
process in UN, and the development of performance envelopes as a function of temperature, linear heat generation 
rate, and burnup. The AFQ methodology outlined here offers a robust proof-of-concept template for qualifying 
advanced nuclear fuels, supporting regulatory modernization efforts for next-generation reactor technologies.

Keywords — Accelerated fuel qualification, uranium nitride, fuel performance, BISON, mechanistic model. 

I. INTRODUCTION

Many new reactor designs for both terrestrial and 
space applications are targeting challenging operating 
regimes, such as high temperature, long lifespan, and 
high burnup. These designs also aim for compact size, 
enhanced reactor safety, and sufficient safety margins 
covering all operating conditions. As a result, there is 
a need to use nuclear fuels that can support these ambi
tious goals. Uranium mononitride (UN) has emerged as 
a promising candidate, offering high thermal conductiv
ity, a high melting point, chemical compatibility with 
most cladding materials, and high fissile density [1]. 
UN is suitable for both fast and thermal spectrum reac
tors, making it attractive for a wide range of designs.

However, before any nuclear fuel can be used in 
commercial or advanced applications, it must be qualified 
and approved by the U.S. Nuclear Regulatory 
Commission (NRC). Research and development on UN 
began in the 1960s, primarily for space and generation-IV 
(GEN-IV) reactor applications. Several programs suc
cessfully characterized the properties of unirradiated UN 
and conducted limited irradiation and post-irradiation 
examinations. While these efforts generated valuable 
data, the available information remains insufficient com
pared to that of traditional fuels (i.e., UO2), and funding 
for further experimental programs was discontinued 
before the fuel qualification could be completed.

To support the qualification of advanced fuels and the 
licensing of advanced reactor technologies, the NRC began 
looking at the criteria and possible alternative frameworks. 
The accelerated fuel qualification (AFQ) process, discussed CONTACT Zachary Miller zacharymiller@lanl.gov
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by the NRC, is of particular interest to vendors aiming to 
deploy advanced reactors by the end of this decade. The AFQ 
process is designed to reduce the number of required integral 
irradiation tests by supplementing existing experimental data 
with advanced, physics-based modeling and simulation [2].

In this paper, we describe the development of an 
AFQ approach that couples advanced modeling and simu
lation methods, machine learning (ML), and legacy data 
from the past experiments. The framework is demon
strated on a proof-of-concept UN fuel characterization.

II. PROPOSED AFQ FRAMEWORK

The proposed AFQ framework couples legacy experi
mental data with advanced modeling and simulation, ML, 
and a limited number of targeted experiments focused on 
investigating areas of high uncertainty. A graphical outline of 
the approach is shown in Fig. 1. This tightly coupled, multi
scale methodology ensures that each component informs and 
enhances the others.

Atomic-scale defects (e.g., such as vacancies, inter
stitials) drive macroscopic fuel degradation mechan
isms, such as volumetric swelling, fission gas release, 
and creep [3]. Such degradation directly threatens key 
reactor safety functions, including the confinement of 
radioactive materials, control of reactivity, and effec
tive core cooling.

To accurately predict these phenomena, the frame
work integrates atomistic simulations, including density 

functional theory (DFT) and ML interatomic potentials, 
to compute defect diffusion rates and cluster growth 
kinetics [3–7]. The results of the atomistic simulations, 
e.g., the entropy and enthalpy of structural defects, are 
scaled up to the mesoscopic regime via cluster dynamics 
simulations to predict diffusion coefficients. ML models 
trained on experimental data, cluster dynamics outputs, 
and data-augmented experimental legacy data sets predict 
material properties, such as diffusion coefficients, with
out the need for computationally intensive molecular 
simulations [3].

ML also refines interatomic potentials, such as those 
for uranium, derived from atomic-scale calculations, 
thereby improving the fidelity of the simulations that 
investigate radiation, chemical, and manufacturing 
effects. These enhanced potentials are subsequently used 
to parameterize mechanistic fuel performance models, 
closing the multiscale loop and significantly reducing 
the experimental burden required for fuel qualification.

Uncertainty quantification (UQ) is critical for ensur
ing model validity and acceptability. Unlike empirical 
models with a limited domain of applicability, our 
mechanistic approach uses first-principles parameters, 
such as grain size, defect density, and porosity, for exam
ple [3,8,9]. Mechanistic fuel performance models 
describe the interactions of these microstructure state 
variables as a function of reactor operational conditions 
and irradiation time, predicting consequent changes in the 
fuel, and therefore the surrounding materials, such as 
cladding.

Fig. 1. Proposed AFQ approach. 
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However, the accuracy of these predictions depends 
on rigorous UQ. We employ advanced statistical methods 
and ML–driven sensitivity analysis to identify and reduce 
the impact of key uncertainties on swelling and other fuel 
performance predictions. This process enhances the valid
ity and robustness of the models, especially when extra
polating beyond existing experimental data.

A proof-of-concept demonstration of the proposed 
AFQ framework was developed by applying it to UN 
fuel, with the goal of reducing uncertainties related to 
the modeling and simulation of the physical phenom
ena that are the major contributors to safety limits and 
margins for nuclear fuels, and defining a preliminary 
fuel performance envelope. Fuel swelling is identified 
as the governing life-limiting [10,11] mechanism for 
UN fuel, and the initial fuel performance envelope is 
defined based on fuel swelling as a function of fuel 
temperature, linear heat generation rate, and burnup 
(neutron fluence). The envelope maps the parameter 
space where mechanistic fuel performance code predic
tions align with experimental data, and it serves as the 
starting point for reactor design and future qualification 
experiments.

Vendors can expand this envelope using phenomena 
identification and ranking table (PIRT) analysis and tar
geted experiments, leveraging the AFQ framework to 
prioritize high-impact tests and refine safety margins for 
specific reactor designs. Moreover, the workflow pre
sented here is not specific to swelling in UN fuel and 
can be transferred to various other physical behaviors and 
to other fuels.

With the AFQ framework and its application to UN 
fuel established, the next section presents the combined 
development and validation of the mechanistic models 
and ML approaches. Here, ML-driven refinement of key 
parameters, such as diffusivity coefficients, directly feeds 
into mechanistic fuel performance simulations (e.g., in 
BISON [12]), supporting UQ and enabling more reliable 
predictions of swelling and related phenomena. This inte
gration ensures that the mechanistic models are both 
physically grounded and statistically credible, providing 
a solid foundation for defining the initial fuel perfor
mance envelope and supporting future experimental 
campaigns.

Finally, legacy data and these validated models will 
define the performance envelope, specifying operational 
limits for temperature, linear heat generation rate, and 
burnup, where mechanistic predictions align with experi
mental data. This envelope serves as the foundation for 
reactor designers to expand via targeted PIRT-guided 
experiments.

III. ML-ENHANCED MECHANISTIC MODELING FOR 
URANIUM NITRIDE SWELLING PREDICTION AND 
UNCERTAINTY REDUCTION

As mentioned, our AFQ methodology is focused on 
reducing uncertainties in advanced fuel performance 
modeling. Our recommended approach is shown in 
Fig. 2. The process begins with an assessment of initial 
uncertainties, informed by legacy experimental data and 
current UN empirical models. These models employ 
swelling correlations developed by Ross et al. [13] for 
space nuclear applications, based largely on the SNAP-50 
experimental campaign. However, these correlations have 
a limited domain of applicability (fuel temperature: 1200 
to 1600 K and burnup: 0.05 to 4.58 at. %) and exhibit 
projected uncertainties of ±25% at burnups above 1.12% 
fissions per initial metal atom (FIMA) and greater than 
60% at lower burnups [13]. 

Next, the AFQ process leverages legacy data and 
new mechanistic BISON models, initially informed by 
atomistic simulations, to describe the interactions of all 
microstructure state variables as a function of reactor 
operational conditions and irradiation time. It is the goal 
of this step to begin model verification against the empiri
cal model and experimental data.

Several UN fuel testing campaigns were conducted 
over the past 40 years, resulting in a limited number of 
experimental data sets reflecting UN fuel swelling as 
a function of fuel temperature, power density and 
burnup [14–37]. These campaigns, including SNAP-50 
CANEL, SNAP-50 ORNL, BR-10, NASA and Battelle, 
primarily targeted high-temperature irradiation regimes, 
with most tests limited to burnups up to 5% FIMA. Only 
the BR-10 series extended this range to 5% to 8% 
FIMA, reflecting GEN-IV SMR designs. Fig. 3 illus
trates the available UN volumetric fuel swelling experi
mental data as a function of burnup, power density and 
temperature.

When comparing new fuel performance data with 
legacy data sets, it is essential to select data that are 
both reliable and well suited for accurate modeling. 
Consequently, the SNAP-50 test series was chosen as 
the ideal benchmark for this initial comparison. Fig. 4 
and Table 1 provide a detailed comparison of the legacy 
empirical model, the new mechanistic model, and the 
experimental data from the SNAP-50 series, enabling 
a clear evaluation of model performance against estab
lished experimental results.

Despite the utility of these data, substantial uncer
tainties (4% to 67%) persist due to the limited number of 
tests and gaps that remain in the test documentation. The 
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NRC has emphasized that legacy data used for fuel qua
lification must meet high quality assurance standards, 
necessitating their use alongside high-fidelity modeling 
and additional targeted experiments to support robust UN 
fuel qualification [2]. For this reason, careful considera
tion must be taken to select the appropriate legacy experi
mental data that will be used to compare our mechanistic 

model against. For example, the top pin of test series 667 
operated at a lower temperature compared to the middle 
and bottom pins, however, it shows that the swelling was 
nearly twice that of the middle and bottom pins. 
Generally, it is expected that lower temperatures cause 
less expansion within the fuel, leading to lower volu
metric swelling.

Fig. 2. Methodology of uncertainty reduction for UN swelling prediction. The width of the horizonal arrows represents the 
qualitative amount of uncertainty for each level. 

Fig. 3. UN fuel swelling as a function of burnup [14–37]. 

4 Z. MILLER ET AL.



As shown in Table 1, the mechanistic model demon
strated a clear performance advantage over the empirical 
correlation–based approach, reducing swelling prediction 
errors by 31% on average compared to the empirical 
correlations. It outperformed the empirical model in 
45% of the test cases, with standout accuracy at low 
burnups ( <1.1% FIMA), exemplified by CANEL 613-B 
(4% error) and CANEL 603-B (6% error). However, high 
burnup and extreme temperatures introduced greater 
uncertainty, as fission gas migration amplified errors 
(e.g., 220-B: 110% error). While the model maintained 
superior performance in select high-burnup scenarios, 
increasing fission gas migration and swelling at elevated 
burnups generally introduced greater uncertainty, under
scoring the importance of the refinement of the gas dif
fusivity parameters in high-burnup and high-temperature 
regimes.

IV. MULTISCALE UQ OF URANIUM NITRIDE

At the next stage, further uncertainty reduction was 
achieved by applying Monte Carlo sampling to the key 
physical parameters (e.g., diffusion coefficients) that 
influence fuel swelling. In this work, the sampling dis
tributions were either uniform or log-uniform depending 
on how many orders of magnitude the parameter space 
covered. This sampling was performed in a multiscale 
framework by coupling atomistic simulations using 

calculations performed using ML interatomic potentials 
and DFT to the cluster dynamics code CENTIPEDE [36].

CENTIPEDE can be used to calculate the diffusiv
ities of various chemical species and defects in the fuel 
lattice. The resulting data sets generated by CENTIPEDE 
serve as inputs to the updated mechanistic BISON mod
els. Next, a calibration process was applied to the diffu
sion coefficient predictions. Baseline parameters in the 
cluster dynamics model, initially derived from DFT- 
derived and empirical potentials, can be calibrated self- 
consistently via a feedback loop integrating the data- 
driven methods (such as genetic algorithms), data aug
mentation techniques, molecular simulations, and experi
mental legacy data used for ML training [3]. The 
resulting data sets generated by CENTIPEDE serve as 
inputs to the mechanistic BISON models.

A principal step in the multiscale UQ process is to 
connect the atomistic-level calculations and simulations 
to the mesoscale diffusivity calculations by varying the 
parameters in the CENTIPEDE code, where each para
meter represents a specific energetic or kinetic property 
in the fuel lattice. When performing CENTIPEDE cal
culations, the uncertainty in the atomistic parameters are 
explored by randomly sampling the values for each 
parameter within defined error bounds [38]. This sam
pling is done 5000 times, and a CENTIPEDE calcula
tion is performed across multiple temperatures for each 
set of sampled parameters. The resulting temperature- 
dependent xenon and vacancy diffusivities are then fed 

Fig. 4. Volumetric swelling versus burnup for various SNAP-50 test series. Error bars indicating ±20% are included on all 
experimental data points [18,19]. 
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TABLE 1 

SNAP-50 Test Series Operational Conditions and Model Uncertaintya [13,18,19] 

Test 
Series

Capsule
Maximum Fuel 

Temperature 
(K)

Burnup 
(% FIMA)

Volumetric 
Swelling (vol %)

Error 
Differential (%)

Locationb
Experi 
mental Empirical BISON Empirical BISON

CANEL

600 T 1424 0.19 3 0.81 0.69 −73% −77%
M 1551 0.18 1.8 0.94 0.80 −48% −56%
B 1574 0.18 1.8 0.97 0.84 −46% −53%

602 T 1272 0.97 3 2.34 2.09 −22% −30%
M 1432 0.91 3.5 2.95 2.34 −16% −33%
B 1399 0.86 2.4 2.65 2.18 10% −9%

603 T 1300 0.74 2.9 1.98 1.80 −32% −38%
M 1460 0.73 2.7 2.58 2.08 −5% −23%
B 1429 0.71 2.1 2.39 1.97 14% −6%

613 T 1388 0.54 1 1.79 1.53 79% 53%
M 1503 0.53 1.4 2.12 1.76 52% 26%
B 1413 0.58 1.7 1.98 1.63 16% −4%

220 T 1600 0.95 5 3.93 2.42 −21% −52%
M 1800 0.95 6 5.2 5.01 −13% −17%
B 1603 0.96 1.9 3.98 2.43 110% 28%

231 T 1741 1.95 8.9 8.74 5.02 −2% −44%
M 1950 1.92 10 11.29 12.75 13% 28%
B 1810 2.03 8.4 9.92 6.57 18% −22%

240 T 1696 1.51 5.8 6.63 4.39 14% −24%
M 1800 1.61 8 8.04 7.76 0% −3%
B 1743 1.58 7.8 7.32 5.34 −6% −32%

ORNL

658 T 1428 1.08 3.7 3.36 2.64 −9% −29%
M 1502 1.08 3.8 3.78 3.22 0% −15%
B 1485 1.08 3.5 3.68 3.01 5% −14%

662 T 1383 1.16 4.1 3.3 2.60 −20% −37%
M 1519 1.16 4.3 4.12 3.57 −4% −17%
B 1514 1.16 4.5 4.09 3.48 −9% −23%

664 T 1418 0.58 1.8 1.98 1.81 10% 1%
M 1457 0.58 1.4 2.11 1.98 51% 41%
B 1480 0.58 1.2 2.19 2.12 83% 77%

665 T 1327 4.58 7.1 9.23 5.28 30% −26%
M 1432 4.58 7.9 11.05 5.74 40% −27%
B 1377 4.58 7.7 10.07 5.50 31% −29%

667 T 1434 0.78 3 2.6 2.16 −13% −28%
M 1489 0.78 1.7 2.84 2.46 67% 45%
B 1505 0.78 1.8 2.91 2.57 62% 43%

669 T 1213 2.72 6.1 4.87 3.56 −20% −42%
M 1354 2.72 6.9 6.31 4.04 −8% −41%
B 1314 2.72 5.6 5.88 3.91 5% −30%

a(+) uncertainty values indicate swelling values are greater than experimental 
(−) uncertainty values indicate model values are less than experimental. 
bT (top capsule), M (middle capsule), and B (bottom capsule). 
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into BISON, where fuel behavior is simulated for each 
of the 5000 sets of sampled atomic-scale parameters.

Shown in Fig. 5 are the diffusivity distributions 
for xenon-based defects and vacancy-based defects at 
1000 K and 1800 K, respectively, calculated using the 
baseline atomistic parameters calculated using DFT 
and empirical methods [38]. The orange curve in 
each plot is a fit of the data to a skew-normal dis
tribution. The temperature-dependent diffusivity 
curves used in BISON are shown in Fig. 6.

Compare the distributions in Fig. 5 to those shown 
in Fig. 7, which include the information from ML 
interatomic potentials for UN developed by us, which 
to our knowledge, are the first ML-based potentials for 
UN [6]. The ML potentials reduce the variance in the 
distributions compared to the baseline parameter set. 
This can be seen by comparing the variance for each 
distribution in each of the two figures. In each plot, the 
skew-normal fitting usually fits the data well, but for 
the more sharply peaked symmetric distributions (Xe at 
1000 K) and highly asymmetric distributions (vacan
cies at 1000 K), the fit does not quantitatively capture 
the distribution behavior, though they are qualitatively 
reasonable.

A log-normal fitting was also attempted, and its 
performance was significantly worse than skew normal. 

The effect the ML method had on the variance and skew 
of these fits compared to the DFT data is shown by 
comparing Figs. 5 and 7.

Fig. 8 shows how the impact of reducing atomistic 
uncertainties can affect uncertainties in the diffusivity cal
culations in a hypothetical situation where the error bounds 
on the atomistic parameters have been reduced by a factor of 
10. The baseline distributions are shown in purple, and the 
new distributions after uncertainty reduction are shown in 
red. Notice that reducing the atomistic uncertainties by an 
order of magnitude results in several orders of magnitude 
reduction in the variance of the diffusivity distributions. 
This nonlinear relation between uncertainty input and 
uncertainty output could be an important observation affect
ing multiscale AFQ processes.

At the reactor scale, BISON predicts behaviors like 
fuel swelling. To do this, some of the mesoscale para
meters it requires are the diffusivities of xenon defects 
and vacancies. Here, these diffusivities and other mesos
cale properties were obtained via CENTIPEDE; but 
CENTIPEDE requires atomic-scale parameters for each 
chemical species present as inputs.

By integrating diffusivity uncertainties, developed 
through the methodologies previously described, with 
burnup variations, we further identified and refined key 
uncertainties affecting UN fuel swelling, as illustrated in 

Fig. 5. Diffusivity distributions of (left) xenon-based defects and (right) vacancy-based defects in UN calculated using 
CENTIPEDE with input data from DFT calculations and empirical methods [38]. The top row is for 1000 K and the bottom 
row is for 1800 K. The orange curve in each plot is a fit to a skew-normal distribution with the respective distribution parameters 
shown in each legend. 
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Fig. 9. The diffusion rates of the defects, including xenon, 
uranium, and nitrogen, play a critical role in swelling beha
vior [3]. This was demonstrated by generating a series of 
temperature-dependent diffusivity curves derived from ran
dom sampling within known uncertainty bounds for various 
input parameters within the DFT simulations [3].

From these random distributions of Xe and 
U diffusivity, we generated corresponding distributions 
of fuel pin diameter changes, exemplifying the impact of 

diffusivity variability. The left panel of Fig. 9 presents 
fuel pin diameter predictions as a function of burnup, 
showing distributions of predicted values at each burnup 
step due to the random diffusivity distributions.

The width of the distributions increases with burnup 
because the contribution from gaseous products increases, 
and as a result, impact on the fuel pin diameter from the 
diffusion rates becomes more significant. For low burnup, the 
impact is low and the distribution is narrow and peaked. The 

Fig. 6. Temperature-dependent diffusivity curves for (left) xenon and (right) vacancies. Each curve represents the results of 
a different parameter set used in CENTIPEDE. 

Fig. 7. Diffusivity distributions of (left) xenon-based defects and (right) vacancy-based defects in UN calculated using CENTIPEDE 
with input parameters generated from a ML interatomic potential [6]. The top row is for 1000 K and the bottom row is for 1800 K. The 
orange curve in each plot is a fit to a skew-normal distribution with the respective distribution parameters shown in each legend. 
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impact from gaseous products below 0.8% FIMA is negligi
ble, as expected, based on past experiments and theory.

Additionally, the fuel pin diameter grows with 
increases in burnup and with increases in temperature 
(not shown on the graph). The table on the right side of 
Fig. 9 shows a comparison between the empirical and 
mechanistic BISON model predictions of the fuel pin 
diameters and corresponding uncertainties. The fuel pin 
diameters resulting from the correlation-based empirical 
model were smaller than the diameters calculated using 
the mechanistic model. The difference between the two 
methods increased with burnup, with the contribution of 
gaseous swelling to the diameter increasing. This indi
cated that the correlation-based model did not capture the 
physics and underestimated the fuel pin diameter.

Consequently, its use requires the utilization of 
higher safety margins with the corresponding additional 
constraints on the power plant. Also, the uncertainties 
associated with the empirical model were larger (25% to 
60%) due to the uncertainties in the corresponding 
experimental data. At the next step, it is planned to 
model the burnup in the range of 3% to 8% FIMA 

using better statistics and to compare to the experimental 
series BR-10 that was not used in the development of the 
BISON mechanistic model.

Also, although not performed in this work, the final 
uncertainty reduction in the performance envelope of the 
nuclear fuel, in this case UN, can result from the genera
tion of new experimental ion irradiation data. This new 
data will be used to validate predictions of dislocation 
and fission gas behavior as functions of temperature and 
fluence generated by the mechanistic swelling models. 
These experiments will target physical regimes with the 
highest uncertainty as calculated using the multiscale 
framework presented in this work.

V. UN FUEL PERFOMANCE ENVELOPE

The fuel performance envelope defines the environ
mental conditions and radiation exposure under which 
nuclear fuel must reliably perform [2]. It supports safety 
analysis and informs the design of the reactor core, fuel 
assemblies, and operating limits. The fuel performance 

Fig. 9. Fuel pin diameter prediction using the (left) new mechanistic model and (right) a comparison to the old empirical model. 

Fig. 8. Idealized case showing the diffusivity distributions using the baseline error bounds on the atomistic parameters (blue) 
compared to the case when those bounds are reduced by a factor of 10. All CENTIPEDE simulations used to generate these 
results were performed at 1000 K. 
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envelope significantly influences the broader nuclear 
power plant operating envelope, including key parameters 
such as fuel temperature, power peaking, and coolant 
temperature. It also affects technical factors like cycle 
length, target burnup, and refueling strategy.

To construct an initial performance envelope for UN 
fuel, all available legacy volumetric swelling data were 
plotted as a function of maximum fuel temperature, 
power density, and burnup. This envelope defines the 
parameter space where experimental data currently 
exist, providing a reference for comparison with other 
data, such as the mechanistic fuel performance model 
predictions.

Within this envelope, three boundaries are high
lighted in Fig. 10. The gray region encompasses the full 
range of raw data. The orange outline indicates the upper 
bound of the 2σ (95%) envelope, and the blue outline 
shows the 1σ (68%) envelope. Together, these define the 
space where the available data, and thus confidence in 
UN fuel performance predictions, is highest.

BISON was employed to evaluate UN fuel per
formance, incorporating advanced mechanistic 
approaches. Past experimental data were statistically 

analyzed and compared to the simulation results from 
BISON to validate the model predictions. Fig. 11 
shows a side-by-side comparison of the performance 
envelope of the SNAP-50 irradiation data compared 
to the same test pins analyzed through the BISON 
mechanistic fuel performance code. The maximum 
envelope maintains an approximate shape; however, 
the 1 and 2 sigma volumetric swelling reduce in size 
when using the BISON fuel performance model. This 
indicated that the model tended to underpredict the 
upper percentile values (1σ and 2σ), resulting in 
a narrower predicted performance envelope compared 
to experimental observations. Further validation 
against a broader set of experimental data is recom
mended to ensure the model accurately captures the 
full range of fuel performance.

To continue revising the fuel performance envelope 
shown in Fig. 11, the full uncertainty reduction metho
dology outlined in Fig. 2, along with analysis of operat
ing transients in a generic microreactor, are required. 
Additionally, it is anticipated that this envelope will be 
expanded through new experiments guided by PIRT ana
lyses specific to unique reactor designs.

Fig. 10. Initial UN fuel performance envelope based only on past experimental data [14–37]. The gray outline corresponds to all 
available data, orange is the 95th percentile, and blue is the 68th percentile. 
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These experiments will be informed by the com
pleted AFQ work, which identified the dominant phe
nomena influencing UN fuel behavior. Each reactor 
vendor is expected to tailor and extend the fuel perfor
mance envelope based on PIRT analyses relevant to their 
design and by leveraging the AFQ methodology. This 
will ensure that performance predictions are reliable 
across a broader range of conditions.

VI. CONCLUSIONS

Advanced fuels are supported by a limited set of 
experimental data, which falls short of meeting the 
requirements for traditional fuel qualification processes. 
Recognizing this gap, there is growing interest in devel
oping AFQ methodologies. In this work, we presented 
the development of a prototype AFQ framework 
designed to address these challenges. This framework 
integrates advanced modeling, ML techniques, legacy 
experimental data, and a select set of new experiments 
to systematically investigate potential failure mechan
isms in UN fuel.

We detailed the structure of the proposed framework 
and its application to UN fuel characterization. Notably, 
we reported initial predictions of UN swelling, a key life- 
limiting failure mode for uranium nitride fuel, along with 
the associated computational uncertainties. The AFQ 
approach demonstrated improved accuracy in predicting 
fuel pin diameter changes and achieved a reduction in 
uncertainty compared to previous methods.

The preliminary fuel performance envelope, based 
on swelling as a function of fuel temperature, power 
density, and burnup, was first established using histor
ical experimental data. This envelope, refined with new 
multiphysics modeling, will be updated again with UQ 
derived from the developed multiscale AFQ framework 
in the future. Overall, our findings provided evidence 
that multiscale UQ, facilitated by ML, can effectively 
narrow the safe performance envelope for UN fuel, 
offering a robust and data-driven pathway for advanced 
fuel qualification.
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