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A fundamental and open problem in materials science is to determine how the

structural properties of irradiated and self-irradiated materials evolve in time. Struc-

tural defects generated by irradiation lead to changes in a material’s macroscopic

properties, and these macroscopic changes, such as volumetric swelling, can in turn

give rise significant alterations of the functionality of a material. Here, we develop a

unified analytical model to understand the complex interplay between aggregation,

fragmentation, and recombination processes involving mobile clusters of defects such

as bubbles, voids, and interstitial atoms in materials subject to radiative sources.

Specifically, we employ a mean field approach to derive a system of coupled kinetic

equations that describes both the time evolution of the density of each type of defect

and how clusters of each defect form and grow as the material ages.

I. INTRODUCTION

Understanding how irradiation and self-irradiation processes affect the structural prop-

erties of materials, and how in turn these altered structural properties give rise to changes

in a material’s functionality has generated substantial interest due to it’s importance for a

number of security, energy, and industrial applications.1–6 Elucidating and predicting these

processes is particularly important both in nuclear materials and in other materials that are

used in the construction of nuclear reactors. Theoretical and computational work plays a

prominent role in studies that seek to understand and predict the outcome of these processes

because (a) experimental measurements are often not available due to security and safety

protocols that make performing measurements on nuclear materials difficult without specific
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infrastructure and (b) the experimental timescales—often of the order tens of years—that

are needed to evolve these materials into states of interest.7 In some cases artificial irradia-

tion can be used to mimic and accelerate the aging process of nuclear materials, but artificial

aging often does not result in the same altered structures that arise from natural aging and

therefore provides only a qualitative picture of a material’s natural time evolution. Because

obtaining experimental measurements is cumbersome, developing theoretical models that

quantitatively capture the effects of irradiation is of paramount importance in the fields of

theoretical and computational materials science. Some of the primary goals of these studies

are to enhance the safety and assess the function of aging nuclear materials.

Previous theoretical work on the kinetics of irradiated materials has focused on the de-

velopment of systems of master equations that describe how clusters of point defects evolve

in time.5,8–10 The defect type, or combination of defect types, that dominate the struc-

tural changes generated by irradiation is often specific to the material. In general, some

combination of bubbles (clusters of gas atoms that are generated by nuclear processes),

voids (clusters of vacancies), interstitial clusters, and bubble-void clusters are present after

irradiation.5,9,11–13 Interstitial-void clusters are typically not observed due to the propensity

of these two defects to combine. Additionally, the propensity of bubbles and interstitial clus-

ters to aggregate depends significantly on the material, and, in general, the propensity of each

defect type to cluster with itself and with other defect types is material dependent.11,12,14–24

One of the core approaches used to understand and predict defect evolution in materials is

cluster dynamics.3–6,8,9,25 Cluster dynamics models can be used to predict complex coupling

and interplay between aggregating defect types, the mobility of defects, and the fragmenta-

tion of clusters. In a cluster dynamics simulation, a mean-field method is used to track the

time evolution of concentrations or densities of point defects and defect clusters.6,23,24

Here, we develop a dynamical system based on cluster dynamics that describes point

defect evolution and the growth of defect clusters in irradiated materials.4,17,20 The developed

model incorporates aggregation, fragmentation, recombination processes while accounting

for the mobility of defect clusters of various sizes. More specifically, a mean field theory is

used to derive a system of coupled kinetic equations that describes the time evolution of the

density of bubbles, voids, bubble-void clusters, and clusters of interstitial atoms. The rate

constants in the model are derived using the Arrhenius kinetic picture and ideas adopted

from other rate theories including transition state theory26 and classical nucleation theory.27
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The rest of the report is organized as follows: Section II contains the details of kinetic

scheme we use to model defect and cluster growth in irradiated and self-irradiated materials.

The details of the rate constants that are used in this model are presented in Sec. III.

Concluding remarks are presented in Sec. IV.

II. MODEL

The dynamical system we employ to model defect cluster and void evolution in irradiated

materials is defined by the coupled set of kinetic equations:
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where ρ
(b)
k is the density of bubbles consisting of k atoms (k-bubbles), ρ

(bv)
k,l is the density

of bubble-void clusters consisting of k atoms and l vacancies ({k, l}-bubbles), ρ(v)k is the

density of voids consisting of k vacancies (k-voids), and ρ
(int)
k is the density of clusters

of interstitial atoms consisting of k atoms (k-clusters). The prefactors A, F , and R are

respectively aggregation, fragmentation, and recombination rate constants for the different

reactions where the species involved in each specific reaction is given in the superscript.

The subscript in each aggregation and recombination rate constant indicates the size of

the two bubbles, bubble-void clusters, voids, and/or interstitial clusters that are reacting.
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Here, the only type of fragmentation processes considered are reactions that result in two

fragments. The fragmentation rate constant subscripts indicate the size of the initial cluster

and the size of the two product fragments. More detail about the rate constants is given

in Sec. III. The symbol δi,j is the Kronecker delta. The terms Gb(t) and Gv(t) are the

generation rates for monomeric gas (1-bubbles) and vacancies (1-voids), respectively. The

generation rate of interstitial atoms (1-clusters), Gint(t), is equal to the generation rate of

vacancies. Generation rate terms for defects of size > 1 can be easily added to the model if

needed.

We ignore the spatial dependence of each density term by assuming that defect gener-

ation takes place uniformly through the material and that defect migration is an isotropic

process. Interstitial-gas aggregation terms are not included in the model because it has

been observed in multiple systems that these clusters are not stable due to strong repulsion

between interstitial atoms and gas atoms. Sink terms are also excluded so as focus on the

atomic interactions leading to growth of clusters and bubbles, but these terms can be easily

added. In each equation above, the sums are taken to be infinite, but in a practical sense

these terms should be truncated at some finite value. Said in more detail, after the system

evolves for some time t, there have been only a finite number of point defects generated

and it is unphysical to sum beyond that number. The particular true upper bound of each

summation will depend on the generation rate of bubbles and vacancies/interstitals and the

consumption rate of these defects in other reactions. Our rationale for using infinite upper

bounds is based on the assumptions that (a) the true upper bounds are large and (b) the

largest and most important terms in the summation happen well before the upper bound is

reached.

A. Model Details

The system of kinetic equations we use to model point defect evolution is complex both

in the number of physical processes that it represents and in the notation needed to identify

these reactions. Therefore, in what follows, we give a detailed explanation of the processes

involved in the model and then explain what each term in the system of equations repre-

sents. There are four species of defect clusters involved in the kinetic model: bubbles (Xk),

interstitials (Intk), voids (Vk), and bubble-void clusters (XkVl) where each subscript k, l ∈ N
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indicates the number of the respective monomeric defects in each cluster. The term denoted

by Xk most commonly represents gas bubbles formed through nuclear processes, for example

Xe gas in UO2 or He in Pu. The specific aggregation processes we consider along with the

associated rate constants are:

Xk +Xl → Xk+l rate constant ≡ A
(b)
k,l

Vk +Vl → Vk+l rate constant ≡ A
(v)
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and one species exists on the product side of the equation. The fragmentation reactions we

consider along with the associated rate constants are:
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where fragmentation implies that one species exists on the reactant side of the chemical

equation and two species exist on the product side of the equation. In the fragmentation

rate constants involving bubble-void clusters, note that the notation {m, 0} implies an m-

bubble (Xm) and {0,m} implies an m-void (Vm). The recombination process included in

the model involves voids reacting with interstitials:

Vk + Intl → Vθ(k−l)(k−l) + Intθ(l−k)(l−k) rate constant ≡ R
(v,int)
k,l

where θ is the Heaviside function. We use the term recombination to broadly define any

reaction in which an interstitial cluster reacts with a void resulting in a reduced number of

both species.
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Note that all of the processes accounted for in the kinetic model proceed through se-

quential pathways and we do not include any concerted pathways. For example, we do not

account for the reaction in which a 3-cluster fragments into three 1-clusters via a concerted

mechanism. In our model, the complete fragmentation of a 3-cluster proceeds sequentially,

first by the 3-cluster fragmenting into a 2-cluster and a single interstitial and then by the 2-

cluster fragmenting into two interstitials, leaving three interstitial atoms as the final product

of the fragmentation reaction.

Equation (1) in the kinetic model,
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describes the evolution of the density of monomeric gas, where the first term, Gb(t), is

generation rate of gas monomers due to self-irradiation and the second, third, and fourth

terms correspond respectively to the loss of density due to: gas monomers combining with

gas bubbles of size i to form (i+ 1)-bubbles, gas monomers combining with i-voids to form

{1, i}-bubbles, and gas monomers combining with {i, j}-bubbles to form {i+ 1, j}-bubbles.

The fifth term represents the density increase due to the fragmentation of an i-bubble into

a 1-bubble and an (i − 1)-bubble. The prefactor term, 1 + δi−1,1, is included to account

for the fact that the fragmentation process of a 2-bubble into two monomers increases the

monomeric density twofold in comparison to the other fragmentation processes represented

in the summation. The sixth term represents the fragmentation of an {i, j}-bubble into

a {1, 0}-bubble (a gas monomer) and an {i− 1, j}-bubble, i.e., this term represents a gas

monomer being ejected by a bubble-void cluster. Equation (2) describes the dynamical

evolution of bubbles of size k ≥ 2:

ρ̇
(b)
k = −

∞∑
i=1

(1 + δi,k)A
(b)
i,kρ

(b)
i ρ

(b)
k −

∞∑
i=1

A
(v,b)
i,k ρ

(v)
i ρ

(b)
k −

∞∑
i=1

∞∑
j=1

A
(bv,b)
{i,j},kρ

(bv)
{i,j}ρ

(b)
k

+
1

2

k−1∑
i=1

(1 + δi,k−i)A
(b)
i,k−iρ

(b)
i ρ

(b)
k−i −

1

2

k−1∑
i=1

(1 + δi,k−i)F
(b)
k→i,k−iρ

(b)
k

+
∞∑

i=k+1

(1 + δi−k,k)F
(b)
i→i−k,kρ

(b)
i +

∞∑
i=k

∞∑
j=1

F
(bv)
{i,j}→{i−k,j},{k,0}ρ

(bv)
i,j ,

where the first, second, and third terms correspond to the loss of density due to bubbles of
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size k combining with, respectively, bubbles of size i to form a (k + i)-bubbles, voids of size

i to form {i, k}-bubbles, and bubble-void clusters of size {i, j} to form {i+ k, j}-bubbles.

The fourth term corresponds to the formation of a k-bubble due to the aggregation of an

i-bubble and a (k − i)-bubble where the factor of 1/2 is included to avoid overcounting the

number of these reactions. The Kronecker delta prefactor is included because when k is an

even number the factor 1/2 is not needed for the i = k− i term in the summation. The fifth

term represents the loss of density due to the fragmentation of a k-bubble into an i-bubble

and a (k − i)-bubble where the prefactor terms are again included to avoid overcounting.

The sixth term corresponds to the density increase due to a bubble of size i > k fragmenting

into an (i− k)-bubble and a k-bubble where the prefactor accounts for the doubling needed

in the summation to account for the case in which a bubble of size i = 2k fragments into

two k-bubbles. The seventh term represents the gain in density due to an {i, j}-bubble with

i ≥ k breaking into an {i− k, j}-bubble and k-bubble.

The evolution of voids is described in Eqs. (3) and (4). The third equation,
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describes the density evolution of single vacancies (1-voids). The first term, Gv(t), is the

generation rate of vacancies due to both self-irradation and thermal effects. The second,

third, and fourth terms correspond to the loss of density due to a single vacancy combining

with, respectively, voids of size i to form a (k + i)-voids, bubbles of size i to form {i, 1}-

bubbles, and bubble-void clusters of size {i, j} to form {i, j + 1}-bubbles. The fifth term

represents the density increase due to the fragmentation of an i-void into a 1-void and an

(i− 1)-void where the prefactor term, 1 + δi−1,1, is included to account for the fact that the

process of a 2-void fragmenting into two monomers increases the density of single vacancies

twofold in comparison to the other terms in the summation. The sixth term represents the

fragmentation of an {i, j}-bubble into a {0, 1}-bubble (a vacancy) and an {i, j − 1}-bubble.

The seventh term represents the loss of density due to the recombination of a single vacancy

and a cluster of size i (leaving a cluster of size i − 1) and the eighth term represents the
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density increase due to the recombination of an void of size i ≥ 2 and a (i−1)-cluster leaving

a single vacancy. Equation 4,
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decribes the evolution of k-voids for k ≥ 2. The first, second, and third terms correspond

to the loss of density due to voids of size k combining with, respectively, voids of size i to

form a (k+ i)-voids, bubbles of size i to form {i, k}-bubbles, and bubble-void clusters of size

{i, j} to form {i, j + k}-bubbles. The fourth term corresponds to the formation of a k-void

due to the aggregation of an i-void and a (k − i)-void. The fifth term represents the loss of

density due to the fragmentation of a k-void into an i-void and a (k− i)-void. The sixth and

seventh terms correspond to the density increases due to, respectively, a void of size i > k

fragmenting into an (i− k)-void and a k-void an {i, j}-bubble with j ≥ k fragmenting into

am {i, j − k}-bubble and k-void. The eighth term represents the loss of density due to the

recombination of a k-void and a cluster of size i and the ninth term represents the density

increase due to the recombination of an void of size k + i and a i-cluster leaving a k-void.
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The fifth equation:

ρ̇
(bv)
{k,l} = −

∞∑
i=1

A
(bv,b)
{k,l},iρ

(bv)
{k,l}ρ

(b)
i −

∞∑
i=1

A
(bv,v)
{k,l},iρ

(bv)
{k,l}ρ

(v)
i

−
∞∑
i=1

∞∑
j=1

(1 + δ{k,l},{i,j})A
(bv)
{k,l},{i,j}ρ

(bv)
{k,l}ρ

(bv)
{i,j} +

k−1∑
i=1

A
(bv,b)
{k−i,l},iρ

(bv)
{k−i,l}ρ

(b)
i

+
l−1∑
i=1

A
(bv,v)
{k,l−i},iρ

(bv)
{k,l−i}ρ

(v)
i + A

(b,v)
k,l ρ

(b)
k ρ

(v)
l +

k−1∑
i=1

l−1∑
j=1

A
(bv)
{k−i,l−j},{i,j}ρ

(bv)
{k−i,l−j}ρ

(bv)
{i,j}

−
k∑

i=1

(
1− δk−i,0

2

)
F

(bv)
{k,l}→{k−i,l},{i,0}ρ

(bv)
{k,l} −

l∑
i=1

(
1− δl−i,0

2

)
F

(bv)
{k,l}→{k,l−i},{0,i}ρ

(bv)
{k,l}

−
k−1∑
i=1

l−1∑
i=1

F
(bv)
{k,l}→{k−i,l−j},{i,j}ρ

(bv)
{k,l} +

∞∑
i=1

F
(bv)
{k+i,l}→{k,l},{i,0}ρ

(bv)
{k+i,l}

+
∞∑
i=1

F
(bv)
{k,l+i}→{k,l},{0,i}ρ

(bv)
{k,l+i} +

∞∑
i=1

∞∑
j=1

F
(bv)
{k+i,l+j}→{k,l},{i,j}ρ

(bv)
{k+i,l+j},

describes the evolution of bubble-void clusters. The first, second, and third terms corre-

spond to the loss of density due to {k, l}-bubbles combining with, respectively, bubbles of

size i, voids of size i, and bubble-void clusters of size {i, j}. The fourth and fifth terms

correspond respectively to the density increases generated by {k − i, l}-bubbles aggregating

with i-bubbles and {k, l − i}-bubbles aggregating with i-voids. The sixth term represents

the density increase due to a k-bubble combining with an l-void to form a {k, l}-bubble.

The seventh term accounts for bubbles of size {k − i, l − j} combining with bubbles of size

{i, j} to form {k, l}-bubbles. The eighth term corresponds to {k, l}-bubbles fragmenting

into {k − i, l}-bubbles and i-bubbles and the ninth term corresponds to {k, l}-bubbles frag-

menting into {k, l − i}-bubbles and i-voids where the prefactors in these two terms eliminate

overcounting the product {0, l} , {k, 0} in eighth term and the product {k, 0} , {0, l} in the

ninth term, which are the same product. The tenth term represents the density loss due to a

bubble of size {k, l} fragmenting into bubbles of size {k − i, l − j} and {i, j}. The eleventh,

twelfth, and thirteenth terms respectively represent density increases due to the fragmen-

tation of: {k + i, l}-bubbles into {k, l}-bubbles and {i, 0}-bubbles, {k, l + i}-bubbles into

{k, l}-bubbles and {0, i}-bubbles, and {k + i, l + j}-bubbles into {k, l}-bubbles and {i, j}-

bubbles.
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The last two equations represent the time evolution of interstitials. Equation (6),

ρ̇
(int)
1 = Gint(t)−

∞∑
i=1

(1 + δi,1)A
(int)
i,1 ρ

(int)
i ρ

(int)
1 +

∞∑
i=2

(1 + δi−1,1)F
(int)
i→i−1,1ρ

(int)
i

−
∞∑
i=1

R
(v,int)
i,1 ρ

(v)
i ρ

(int)
1 +

∞∑
i=2

∞∑
j=i−1

R
(v,int)
j,i ρ

(v)
j ρ

(int)
i ,

describes the growth rate of the density of monomeric interstitial atoms. The first term,

Gint(t), is generation rate of interstitials due to self-irradiation and thermal effects. The

second term represents the loss of density of interstitials due to the aggregation of interstitial

clusters of size i and size 1 to form (i + 1)-clusters. The third term represents the density

increase due to the fragmentation of a i-cluster into a 1-cluster and an (i− 1)-cluster where

the prefactor, 1+ δi−1,1, is included to account for the fact that the fragmentation process of

a 2-cluster into two interstitials increases the monomeric density twofold in comparison to

the other processes. The fourth term represents the loss of density due to the recombination

of a monomeric interstitial and a void of size i (leaving a void of size i − 1) and the fifth

term represents the density increase due to the recombination of an interstitial cluster of

size i ≥ 2 and a (i − 1)-void leaving a single interstitial. Note that we assume that there

is no multiple occupancy of a vacancy by an interstitial in the recombination process. The

final equation in the kinetic model:

ρ̇
(int)
k = −

∞∑
i=1

(1 + δi,k)A
(int)
i,k ρ

(int)
i ρ

(int)
k +

1

2

k−1∑
i=1

(1 + δi,k−i)A
(int)
i,k−iρ

(int)
i ρ

(int)
k−i

− 1

2

k−1∑
i=1

(1 + δk−i,i)F
(int)
k→k−i,iρ

(int)
k +

∞∑
i=k+1

(1 + δi−k,k)F
(int)
i→i−k,kρ

(int)
i

−
∞∑
i=1

R
(v,int)
i,k ρ

(v)
i ρ

(int)
k +

∞∑
i=k+1

∞∑
j=i−1

R
(v,int)
j,i ρ

(v)
j ρ

(int)
i ,

describes the growth rate of the density of clusters of k ≥ 2 interstitial atoms. The first

term corresponds the loss of density due to clusters of size k combining with clusters of size

i to form a (k + i)-cluster and the second term corresponds to the formation of a k-cluster

due to the aggregation of an i-cluster and a (k− i)-cluster. In the second term, the factor of

1/2 prevents overcounting, meaning that aggregation of i and k− i clusters and k− i and i

clusters represent the same process. The prefactor, 1 + δi,k−i, accounts for the fact that the

factor 1/2 is not needed in the i = k − i term in the summation when k is even. The third

term represents the loss of density due to the fragmentation of a k-cluster into an i-cluster
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and a (k − i)-cluster where the prefactor terms are included to avoid overcounting. The

fourth term corresponds to the density increase due to a cluster of size i > k fragmenting

into an (i− k)-cluster and a k-cluster where the prefactor accounts for the doubling needed

in the summation to account for the case in which a cluster of size i = 2k fragments into

two k-clusters. The fifth term represents the loss of density due to the recombination of a

k-cluster and a void of size i and the sixth term represents the density increase due to the

recombination of an interstitial cluster of size k + i and a i-void leaving a k-cluster.

III. RATE CONSTANTS

The system of kinetic equations defined in Sec. II above is given in a generalized form

that can be broadly applied to understand point and volume defect evolution in irradiated

materials. The generalized system of equations becomes specific to a particular material

through the assignment and evaluation of values for the rate constants and defect generation

rates. In this Section, we derive functional forms for the aggregation, recombination, and

fragmentation rate constants. Two principal assumptions are used in the derivations: (a)

the material is in a thermal equilibrium and can be defined by a global time-independent

temperature and (b) the reaction dynamics in the material follow Arrhenius kinetics. More

specifically, we use assumptions based on transition state theory26,28 and classical nucleation

theory27 in order to derive functional forms for each rate constant.

A. Aggregation

Each aggregation process involves two reactants combining to form a single product

cluster. Here, we assume that the geometry of defect clusters can be well-described using

a spherical approximation. In this approximation, the rate constant for an aggregation

reaction between an i-sized cluster of species s ∈ {b, v, bv, int} and a j-sized cluster of

species s′ ∈ {b, v, bv, int} (excluding combinations involving voids and interstitials as well as

bubbles and interstitials) can be defined as

A
(s,s′)
i,j = 4πr

(s,s′)
i,j D

(s,s′)
i,j κ

(s,s′)
i,j exp

[
−
E

(s,s′)
i,j

kBT

]
, (8)



13

where

r
(s,s′)
i,j = r

(s)
i + r

(s′)
j , (9)

is the capture radius between the aggregating reactants with r
(s)
i and r

(s′)
j being the effective

radii of the i- and j-sized clusters of species s and s′. The effective diffusion coefficient

D
(s,s′)
i,j = D

(s)
i +D

(s′)
j , (10)

characterizes the Brownian motion of the species s sphere relative to the center of the sphere

of species s′, which is itself also undergoing Brownian motion,29 where D
(s)
i and D

(s′)
j are

respectively the diffusion coefficients of the i- and j-sized clusters of species s and s′. The

factor κ
(s,s′)
i,j is the standard transmission coefficient from transition state theory (TST) that

characterizes the probability that a collision event between spheres that has energy above the

activation energy proceeds to form a product. The limit κ
(s,s′)
i,j = 1 implies that all collisions

with energy above E
(s,s′)
i,j go on to the product state. This factor can be interpreted as

accounting for the true geometric effects of the reacting clusters, i.e., nonspherical cluster

geometries. For notational convenience, if s′ = s (meaning that only a single species is

involved in the reaction) then A
(s,s′)
i,j , D

(s,s′)
i,j , and r

(s,s′)
i,j are respectively written as A

(s)
i,j , D

(s)
i,j ,

and r
(s)
i,j . We assume that the diffusion processes for the two reactants are independent and

therefore the effective diffusion coefficient is given by the sum of diffusion coefficients for

each species. The Boltzmann factor e−E
(s,s′)
i,j /kBT in Eq. (8) represents the probability that

two colliding clusters will combine, where E
(s,s′)
i,j is the activation energy, sometimes called

the attachment barrier, for the aggregation process. The temperature dependence of the

diffusion coefficient for an i-sized cluster of species s is commonly accounted for using the

expression

D
(s)
i = D̄

(s)
i exp

[
−E

(s)
mi

kBT

]
, (11)

where E
(s)
mi is the migration energy. Equation (8) can be interpreted using the Arrhenius

picture of reaction kinetics as the frequency that reactant spheres contact each other multi-

plied by the probability that a contact event leads to the two spheres aggregating. Details of

the rate constant derivation in the activationless E
(s,s′)
i,j = 0 regime can be found in Refs. 29

and 30. Note that the activationless regime is widely used in the literature to describe ag-

gregation processes in irradiated materials and implies that two colliding clusters combine

with unit probability.
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The volume of a species s cluster of of size n is V
(s)
n = nV

(s)
1 where V

(s)
1 is the volume of a

single (point) defect of that species. For bubbles (s = b) and interstitials (s = int), the single

defect volume is respectively the atomic volume of a single gas atom and the volume of a

single atom of the base material. In the case of voids (s = v), V
(s)
1 is the effective volume of

a single vacancy. Using the spherical cluster approximation implies that the effective radius

for an n-sized cluster of species s ∈ {b, v, int} is31

r(s)n =

(
3nV

(s)
1

4π

)1/3

= r
(s)
1 n1/3. (12)

For bubble-void clusters, the situation is more complex because gas atoms in the cluster

can take two configurations: interstitial and substitutional, where the interstitial atoms

contribute to the volume of the cluster while the substitutional atoms do not. First, we

define the volume of a bubble-void cluster of size n = {i, j} as

V (s)
n = V

(b)
wi + V

(v)
j , (13)

where V
(v)
j is the volume of a void of size j and V

(b)
wi is the volume taken up by the i gas

atoms in the cluster with w being the fraction of gas atoms that are interstitials. This

implies that the effective radius of bubble-void clusters is

r(s)n =

(
3V

(s)
n

4π

)1/3

, (14)

where V
(s)
n is defined in Eq. (13). When all the gas atoms in the cluster are substitutional

w = 0 and when all the gas atoms are interstitial w = 1; mixtures of interstitial and

substitutional gas atoms will lead to different values for w. Using a mean field approximation,

w can be defined as the average fraction of interstitial gas atoms in the bubble-void clusters:

w = ⟨w⟩. This approximation leads to the definition: V
(s)
n = V

(b)
⟨w⟩i + V

(v)
j .

In summary, the practical evaluation of aggregation rate constants requires information

about: (a) the diffusion coefficients of each species involved in the reaction, (b) the volumes

of the different defects which are used to evaluate the capture radius for the reaction, and

(c) the attachment energies.

Formally, the diffusion coefficient of each species depends on the structural configuration

of the material, which changes as the irradiation and/or self-irradiation processes proceed.

To account for these changes in the above formalism, we define a reaction progress variable
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λ ∈ [0, 1] that parameterizes the extent of the reaction as a function of time t, where

λ = 0 denotes the material in an unradiated state at t = 0 and λ = 1 is the steady-state

t → ∞ limit where the concentration of each defect species is not changing in time. In this

time-dependent picture that accounts for structural modifications in the material, the rate

constant can be recast as:

A
(s,s′)
i,j (λ) = 4π

(
r
(s)
i + r

(s′)
j

)(
D

(s)
i (λ) +D

(s′)
j (λ)

)
κ
(s,s′)
i,j (λ) exp

[
−
E

(s,s′)
i,j

kBT

]
. (15)

where the diffusion coefficients now depend on λ. Practically speaking, due to the complexity

of calculating time-dependent properties, it will almost always be advantageous to first

assume that the rate constants can be well-described as time-independent and then to modify

this assumption as needed based on empirical evidence gained by comparing theoretical

results with experimental observations. This problem may be mitigated using data-driven

and machine learning approaches which may be better able to determine system parameters,

specifically time-dependent properties.32–37

B. Recombination

Recombination reactions occur between voids (clusters of vacancies) and clusters of in-

terstitial atoms of the base material. The recombination process considered here involves

two steps: First, the interstitial atoms in the cluster occupy the vacancies in the void and,

second, the larger of the two reactant species fragments. This means that the result of a

recombination reaction is the filling or partial filling of the void and, if the reactant cluster

and void are not the same size, a smaller void or cluster that arises through fragmenta-

tion. Applying similar physics as those used to derive the aggregation rate constant, the

recombination rate between voids of size i and interstitial clusters of size j is

R
(v,int)
i,j = 4πr

(v,int)
i,j D

(v,int)
i,j κ

(v,int)
i,j exp

[
−
E

(v,int)
i,j

kBT

]
exp

[
−
G

(s)
k→l,|i−j|

kBT

]
, (16)

where E
(v,int)
i,j is the activation energy for the recombination process and G

(s)
k→l,|i−j| is the

activation energy for fragmentation of the larger (by number of monomeric constituents)

species in the reaction with s = v, k = i, l = j if i > j and s = int, k = j, l = i if i < j.

The other parameters in Eq. (16) are defined in the same way as in Eq. (8). In the case
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that the void is larger than the interstitial cluster (i > j) the recombination process leaves

a void of size |i − j| and when the cluster is larger than the void (j > i) a cluster of size

|i− j| remains after the recombination. In the case i = j, there is no fragmentation and the

fragmentation energy is zero.

Assuming the recombination and corresponding fragmentation processes are independent

allows us to write the process probability as a product of each of the individual probabilities

as represented by the exponential terms in Eq. (16) above. Because we have assumed that the

capture and fragmentation steps in the reaction are independent, the rate constant can be

interpreted as the frequency that i-voids and j-clusters come into contact multiplied by (a)

the probability that each contact leads to a successful recombination and (b) the probability

that the energy of the primary activated complex in the reaction also has sufficient energy to

surmount the fragmentation activation barrier leading to the proper fragmentation product.

Here, the primary activated complex is taken to occur when the the atoms in the cluster

have filled the void but the fragmentation of either the void or cluster (whichever is larger)

has not yet occurred.

In order to evaluate the recombination rate we need information about the diffusion

characteristics of the voids and clusters, the point defect volume and the activation energy

of the aggregation and energy fragmentation processes. Also, in a similar fashion to what

was done for the aggregation rate constants, the recombination rate can be modified to treat

structural changes in the material that arise as the irradiation process proceeds by defining

the diffusion coefficients to depend on the reaction progress variable λ.

C. Fragmentation

We consider cluster fragmentation processes that can be induced by either thermal fluc-

tuations or by a collision between clusters. The functional form we use for the fragmentation

rate constant is

F
(s)
i→j,k = κ

(s)
i→j,k

A
(s)
j,k

V
(s)
i

exp

[
−
E

(s)
bi→j,k

kBT

]
, (17)

where A
(s)
j,k is the rate constant for the reverse aggregation process (the cluster formation)

and E
(s)
bi→j,k

is a binding energy that characterizes the energy difference between the reactant

i-sized cluster and the product fragments of size j and size k. Note that the binding energy is
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the energy difference between the stable reactant and product states and is not an activation

energy. The other parameters are defined as in Eq. (8). Also note that the transmission

coefficient for fragmentation process may not be equal to the transmission coefficient for the

reverse aggregation process, i.e., it is not rigorously true that κ
(s)
i→j,k = κ

(s)
j,k. Equation 17

arises from a detailed balance assumption, and in the κ
(s)
i→j,k → 1 limit is the same rate

constant as that used by Stewart et al. in Ref. 25.

The above picture of the fragmentation rate constant is advantageous from a practical

implementation perspective because once the aggregation rate is known, evaluating the

corresponding fragmentation rate only requires information about the binding energy and

the transmission coefficient. However, this reaction picture does not account for the multiple

reaction pathways, and different dynamics along these pathways, that can lead from an i-

sized cluster to j- and k-sized fragments. For example, the rate of ejection of a dimer from

the center of the cluster will be much slower than the rate of ejection of a dimer from the

surface of the cluster, and the difference between these two rates is not accounted for in

Eq. (17). Accounting for each possible i → j, k pathway is a complicated combinatorial

problem and it will often be impractical to evaluate the dynamics along each pathway.

Therefore, the number fragmentation processes are often simplified by assuming that only

monomers can be ejected from a cluster, i.e, that the only possible fragmentation process is

i → 1, i− 1.

IV. CONCLUSIONS

We have introduced a generalized theoretical framework to describe point and volume

defect evolution in irradiated materials. In order to apply this framework to a specific

material, the defect generation rates and the parameters contained in the rate constants

must be assigned. In general, these parameters will come from experimental observations,

electronic structure calculations, and/or atomistic simulations.

While we have derived the kinetic equations using a picture that accounts for the mobility

of clusters of all sizes, it may often by advantageous to simplify the equations in order to

make them computationally tractable and more physical meaningful. For example, it is

known that the mobility of clusters will typically decrease with increasing cluster size, and,

as clusters grow large, the diffusional timescale is such that the timescale of the overall
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chemical process is much faster. This implies that it is often not only reasonable to ignore

the mobility of large clusters, but, from a practical perspective, it is essential in order to

reduce the complexity of the system of equations.

The thermodynamics and kinetics in the model are described using equilibrium assump-

tions, however, it is known that sequential assembly38–45 and more broadly nonequilibrium

assembly processes46 result in structures and cluster geometries that can varying significantly

from the equilibrium results. It may be advantageous in the modeling of some systems to

consider the role and extent that nonequilibrium assembly plays on the kinetics and cluster

distribution. The developed theory could also be modified to rigorously treat systems that

are dominated by nonspherical cluster geometries and therefore nonspherical diffusion prop-

erties. More specifically, the treatment of nonspherical cluster geometries will be required

when two-dimensional defects (for example, dislocation lines and loops) play a prominent

role in the macroscopic structural changes in the material.
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